
dev.tiki.org 2024-05-20 Page 1 of 3

Overview
This page aims to provide basic information on how to approach development projects within Tiki and
point to the appropriate resources. It is not meant to contain every possible detail.

Before you begin, consider the timeline of your project. Of course, it would be great to have it live
tomorrow but be realistic. Too often, projects come up with very tight schedules that force around less
than ideal solutions and extend longer than initially planned.

Tiki has a release schedule that allows planning your development targets ahead. With a release every 8
months, you are often much better off working from trunk and work for the next release than to build on
top of the current stable version. If your needs extend beyond the easy extension points in Tiki, patch
maintenance will become a burden that will cause delays and rework in the project. When working for the
next release, you can contribute your patches and new extension points right away and evolve with the
code base.

Code structure and primary components
Tiki's code evolved over the years and continues to evolve. From the start, the codebase was built to be
flat and easy to understand. For those familiar with the MVC model, there are some references, but you
won't find front controllers or actions within classes. In Tiki, the root PHP script is the controller. The
model is loosely controlled by a set of libraries to interact with the database and the view is handled by
Smarty templates.

The typical lifecycle of a request looks like this:

Input configuration to set-up filters1.
Inclusion of tiki-setup.php, which performs a handful of tasks from filtering the input, loading up the2.
configuration to dealing with multiple environment issues to allow compatibility on different platforms
Feature checks3.
Handling of the user request4.
Setting up the page5.
Rendering via Smarty6.

The code is massive and it contains hundreds of features and configuration options. All of those are stored
within the $prefs global variable, which is also available within Smarty. Many parts of the code will verify
options to alter the behavior of the code. You may need to create new preferences yourself as you work in
the code.

Handling of the user requests is done simply by inspecting the PHP request variables and calling methods
in libraries. Tiki also includes multiple third party libraries. As much as possible, avoid calling them
directly from the script and wrap the behavior within Tiki-specific libraries.

Setting up the page implies loading some information through the libraries located in the lib/ directory
and assigning values to the global $smarty object. The rendering will be made using templates that can be
adapted per style as needed.

Tiki relies on JQuery for cross-browser compatibility of JavaScript and provides helpers to include
JavaScript within your pages.

Content organization
Tiki is many things, but it primarily is a content management system. Before jumping straight into the
development of an entirely new feature, you should consider re-using existing storage mechanism and
building around those to complete your use case. Independent features with a limited scope allow to
quickly build new functionality with targeted user experience, but they tend to create silos of
unmaintained code. On the other hand, if you use existing containers, they are much more likely to evolve

https://markdowndev.tiki.org/tiki-editpage.php?page=release%20schedule
https://markdowndev.tiki.org/Create-a-new-preference
https://markdowndev.tiki.org/Including-JavaScript
https://markdowndev.tiki.org/Including-JavaScript

dev.tiki.org 2024-05-20 Page 2 of 3

by themselves and provide long-term benefits.

You should aim to build the features you need in a generic way so others can benefit from them and
bundle your application as a profile. Think of profiles as recipes to configure Tiki and bind various
features together to serve a use-case.

Begin by determining how to shape the content, then see what gaps need to be filled.

The primary content containers in Tiki are the following:

Wiki pages, allowing for free-form content and custom reporting using plugins. The wiki pages come
with complete revision history, multilingual support and dozens of other features.
Trackers, allowing for user databases with structured content. They provide the basic support for
CRUD without binding to fixed database tables.
File galleries, allowing for file sharing, revision history and WebDAV access. They will also be used to
store attachments to wiki pages and trackers.

Tiki also includes other content features like forums, spreadsheets, polls, calendars and blogs, but they
are less likely to be involved in creating an application based on Tiki.

The required user interactions with the content determine which storage container is the best to use.
When a lot of collaboration is required, wiki pages are a strong contender. The free-form nature allows for
creativity. Trackers are useful when the structure of the information is important when specific fields
need to be searched or sorted for example. File galleries have the advantage of being very easy to
understand, but the web-based experience of manipulating external files is not as good. There is lower
connectivity to the other features.

Global features within Tiki can bridge between the key characteristics of the content features. For
example:

Comments can be added to any content, allowing for more collaboration on tracker items or files in
galleries.
Attachments can be added to tracker items or wiki pages to re-use an existing document as a
reference.
Categories allow regrouping documents to provide some additional reporting capabilities to wiki
pages even though they do not allow for structured content. They also allow the creation of document
workflows through transitions between states.
Tags can be added to all content to allow users to build their own organization of the content and
create custom lists of items they keep track of.

All content features also come with benefits like content indexation for searching permission
management.

As a general rule, it's easier to start small and adapt as needs change.

Permission management
Of course, Tiki will manage the user authentication and their respective permissions. Authentication can
be bridged to user directories like LDAP and single sign-on solutions like OpenID, CAS and others.

From the moment the user is authenticated, he will be part of groups that will grant certain rights to
content within Tiki. The permissions can be granted:

Globally, unless other rules are specified
Per-category, applying to all member objects
Per object, overriding all of the above

dev.tiki.org 2024-05-20 Page 3 of 3

Tiki contains a total of over 200 permissions that can be applied at any of those 3 levels. They typically
connect to certain actions, like viewing a wiki page, editing a page, deleting a tracker item, assigning a
category and many others.

As you develop for Tiki, you will also certainly need to check for a permission or even create a new one.

Extension points
Even though Tiki is monolithic by design to encourage contribution and avoid the dependency hell during
upgrade cycles, there are several extension points built withing the system that allows for customization
and easy extension.

The two primary extension points within Tiki are plugins and modules. Plugins allow to embed something
within content and modules allow to attach something in the interface, currently in the left or right
column, or anywhere through some template hacking (starting in Tiki7: top & bottom as well). They both
can be used for various reasons.

Plugins can be used to:

Act as a decorator to create a visual effect on content
Embed information from another feature
Provide some listing in a dashboard
Perform actions on saving through the post-save hook

A plugin is composed of two functions stored within a PHP file. One of the functions is a descriptor used to
determine some aspects of the execution and build the user interface to insert or edit the plugin, the other
is the actual function used to execute the plugin. See Writing syntax plugins for more information.

Modules can be used to:

Provide navigation to content, either through custom listings or menu objects
Provide contextual information related to the current object, as used for the translation status or
transition user interface

A plugin is minimally defined by a template. Ideally, it also provides a PHP file containing a descriptor
function and an execution function to set-up the module. See Writing modules for more information.

Various other features may have extension points, like search indexing, print features and others.
However, they change a lot over time and the code often is the best resource.

See also
Preferences
Database Schema Upgrade
Database Access

https://markdowndev.tiki.org/Permission-Revamp
https://markdowndev.tiki.org/Code-Howto%3A-Create-a-new-permission
https://markdowndev.tiki.org/Tiki7
https://markdowndev.tiki.org/tiki-editpage.php?page=Writing+syntax+plugins
https://markdowndev.tiki.org/tiki-editpage.php?page=Writing+modules
https://markdowndev.tiki.org/Preferences
https://markdowndev.tiki.org/Database-Schema-Upgrade
https://markdowndev.tiki.org/Database-Access

	Overview
	Code structure and primary components
	Content organization
	Permission management
	Extension points
	See also

